Rsquared Academy Blog

Explore..Discover..Learn

Practical Introduction to Market Basket Analysis - Asociation Rules

Introduction Ever wondered why items are displayed in a particular way in retail/online stores. Why certain items are suggested to you based on what you have added to the cart? Blame it on market basket analysis or association rule mining. Resources Below are the links to all the resources related to this post: Slides Code & Data RStudio Cloud What? Market basket analysis uses association rule mining under the hood to identify products frequently bought together.

A follow up note on our web scraping tutorial

We had published a web scraping tutorial a couple of days back and it had received a good response from the #rstats community. While we thank you for that, we made a mistake in choosing one of the case study as pointed out by @hrbrmstr in this tweet: Whomever runs "R Squared Academy" needs to _really_ learn more about web scraping. https://t.co/jOQRAxFVro clearly prohibits the activity in their recent blog post and puts #rstats users in harm's way.

Practical Introduction to Web Scraping in R

Introduction Are you trying to compare price of products across websites? Are you trying to monitor price changes every hour? Or planning to do some text mining or sentiment analysis on reviews of products or services? If yes, how would you do that? How do you get the details available on the website into a format in which you can analyse it? Can you copy/paste the data from their website?

Shiny Apps for Interactive Data Analysis

We are excited and happy to share a set of shiny apps built for interactive data analysis and teaching at Rsquared Academy. The apps are part of our R packages and presently cover the following topics: Descriptive Statistics Probability Distributions Hypothesis Testing Linear Regression Logistic Regression RFM Analysis Data Visualization We would suggest that you explore the apps using sample data sets available within the app before using your own data set so that you get comfortable with the user interface.

Visually explore Probability Distributions with vistributions

We are happy to introduce the vistributions package, a set of tools for visually exploring probability distributions. Installation # Install release version from CRAN install.packages("vistributions") # Install development version from GitHub # install.packages("devtools") devtools::install_github("rsquaredacademy/vistributions") Shiny App vistributions includes a shiny app which can be launched using vdist_launch_app() or try the live version here. Read on to learn more about the features of vistributions, or see the vistributions website for detailed documentation on using the package.

Binning Data with rbin

We are happy to introduce the rbin package, a set of tools for binning/discretization of data, designed keeping in mind beginner/intermediate R users. It comes with two RStudio addins for interactive binning. Installation # Install release version from CRAN install.packages("rbin") # Install development version from GitHub # install.packages("devtools") devtools::install_github("rsquaredacademy/rbin") RStudio Addins rbin includes two RStudio addins for manually binning data. Below is a demo: Read on to learn more about the features of rbin, or see the rbin website for detailed documentation on using the package.

Getting Help in R

Introduction In this post, we will learn about the different methods of getting help in R. Often, we get stuck while doing some analysis as either we do not know the correct function to use or its syntax. It is important for anyone who is new to R to know the right place to look for help. There are two ways to look for help in R: built in help system online In the first section, we will look at various online resources that can supplement the built in help system.

Logistic regression in R using blorr package

We are pleased to introduce the blorr package, a set of tools for building and validating binary logistic regression models in R, designed keeping in mind beginner/intermediate R users. The package includes: comprehensive regression output variable selection procedures bivariate analysis, model fit statistics and model validation tools various plots and underlying data If you know how to build models using glm(), you will find blorr very useful. Most of the functions use an object of class glm as input.

Descriptive/Summary Statistics with descriptr

We are pleased to introduce the descriptr package, a set of tools for generating descriptive/summary statistics. Installation # Install release version from CRAN install.packages("descriptr") # Install development version from GitHub # install.packages("devtools") devtools::install_github("rsquaredacademy/descriptr") Shiny App descriptr includes a shiny app which can be launched using ds_launch_shiny_app() or try the live version here. Read on to learn more about the features of descriptr, or see the descriptr website for detailed documentation on using the package.

Descriptive/Summary Statistics with descriptr

We are pleased to introduce the descriptr package, a set of tools for generating descriptive/summary statistics. Installation # Install release version from CRAN install.packages("descriptr") # Install development version from GitHub # install.packages("devtools") devtools::install_github("rsquaredacademy/descriptr") Shiny App descriptr includes a shiny app which can be launched using ds_launch_shiny_app() or try the live version here. Read on to learn more about the features of descriptr, or see the descriptr website for detailed documentation on using the package.